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Direct numerical simulations of turbulence resulting from Kelvin–Helmholtz insta-
bility in stratified shear flow are used to examine the geometry of the dissipation
range in a variety of flow regimes. As the buoyancy and shear Reynolds numbers that
quantify the degree of isotropy in the dissipation range increase, alignment statistics
evolve from those characteristic of parallel shear flow to those found previously in
studies of stationary, isotropic, homogeneous turbulence (e.g. Ashurst et al. 1987;
She et al. 1991; Tsinober et al. 1992). The analysis yields a limiting value for the
mean compression rate of scalar gradients that is expected to be characteristic of all
turbulent flows at sufficiently high Reynolds number.

My main focus is the value of the constant q that appears in both the Batchelor
(1959) and Kraichnan (1968) theoretical forms for the passive scalar spectrum. Taking
account of the effects of time-dependent strain, I propose a revised estimate of q,
denoted qe, which appears to agree with spectral shapes derived from simulations
and observations better than do previous theoretical estimates. The revised estimate
is qe = 7.3±0.4, and is expected to be valid whenever the buoyancy Reynolds number
exceeds O(102). The Kraichnan (1968) spectral form, in which effects of intermittency
are accounted for, provides a better fit to the DNS results than does the Batchelor
(1959) form.

1. Introduction
Small-scale turbulence in the Earth’s atmosphere and oceans is often controlled

by a combination of vertical shear and stable density stratification. Shear acts to
force turbulence through the medium of Reynolds stresses, while the buoyancy force
due to density stratification requires that the flow do work against gravity before
vertical motions (and hence Reynolds stresses) can exist. While a large body of
theoretical, numerical and laboratory results exists for the simpler case of stationary,
homogeneous, isotropic turbulence, the relevance of those results to geophysical
turbulence is unclear due to neglect of shear and stratification effects.

My objective here is to extend insights derived from investigations of dissipation-
range geometry in stationary, homogeneous, isotropic turbulence (e.g. Ashurst et al.
1987; Pope 1990; Tsinober, Kit & Dracos 1992; Reutsch & Maxey 1992; Nomura &
Elghobashi 1992; Boratav, Elghobashi & Zhong 1998) to improve understanding of
mixing processes in a sheared, stratified environment. The main result is a revised esti-
mate for the adjustable parameter, traditionally denoted q, that appears in theoretical
forms of the wavenumber spectrum for a weakly diffusive passive scalar (Batchelor
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1959; Kraichnan 1968). This quantity is of central interest, because it represents a
timescale for the fundamental process by which turbulence mixes scalar concentra-
tions, namely the sharpening of gradients via compressive strain (see Gibson (1968a)
for a more complete description of scalar mixing mechanisms). Values obtained from
measurements and simulations of geophysical turbulence tend to exceed the existing
theoretical estimates by factors of 2–10 (e.g. Dillon & Caldwell 1980; Gargett 1985;
Bogucki, Domaradzki & Yeung 1997); my revised estimate attempts to resolve this
discrepancy.

The simplest model for sheared, stratified turbulence is that in which the background
shear and stratification are constant, both in depth and in time. This allows the
maintenance of turbulence that is homogeneous in all three spatial directions and,
in certain circumstances, stationary. These idealizations have been approximated in
laboratory experiments (Rohr et al. 1988; Picirillo & Van Atta 1997) and in several
direct and large-eddy simulation studies (Gerz, Schumann & Elghobashi 1989; Holt,
Koseff & Ferziger 1992; Kaltenbach, Gerz & Schumann 1994; Jacobitz, Sarkar &
Van Atta 1997). In a close antecedent of the present work, Ashurst et al. (1987) (also
see Nomura & Elghobashi 1992) examined the eigenstructure of the strain tensor
in both isotropic flow and flow subjected to a constant shear, but without density
stratification.

Constant-gradient models neglect a potentially important source for turbulence,
namely the dynamic instability of an inflectional velocity profile (Drazin & Reid
1981). In a stably stratified environment, this mechanism results in the well-known
Kelvin–Helmholtz (hereafter KH) instability, which may lead, through a complex
sequence of secondary instabilities, to turbulence (see figure 2 of this paper for a
graphical summary of the process, or Thorpe (1987) for a detailed review). KH
instability has been shown to be important both in the ocean thermocline (Sun,
Smyth & Moum 1998) and in stably stratified atmospheric flows (DeSilva et al. 1996).
Much research on KH instability has been an outgrowth of studies of the related
problem of instability of the unstratified mixing layer (e.g. Brown & Roshko 1974;
Breidenthal 1981; Rogers & Moser 1992; Moser & Rogers 1991, 1993; Soria et al.
1994). Turbulence due to KH instability in stably stratified flow has been the subject
of many laboratory experiments (e.g. Thorpe 1973; Koop & Browand 1979; Defina,
Lanzoni & Susin 1999). The primary instability and its subsequent evolution in two
dimensions were simulated numerically by Patnaik, Sherman & Corcos (1976), Peltier,
Halle & Clark (1978), Klaassen & Peltier (1985a) and others. Secondary instabilities
of finite-amplitude, two-dimensional structures have been explored extensively using
linear analysis (e.g. Pierrehumbert & Widnall 1982; Klaassen & Peltier 1985b; Smyth
& Peltier 1991; Klaassen & Peltier 1991). Recently, computational capacity has
increased to the point where fully nonlinear direct numerical simulation (DNS) of
the transition to three-dimensional flow is possible (Caulfield & Peltier 1994; Fritts et
al. 1996; Palmer, Fritts & Andreassen 1996; Cortesi, Yadigaroglu & Banerjee 1998;
Cortesi et al. 1999; Werne & Fritts 1999).

In this paper, I describe a set of nine direct simulations of turbulent KH bil-
lows, beginning with the initial instability and continuing through the transition to
turbulence and ultimate return to the parallel state (see Smyth & Moum 1999a for
further details). This highly non-stationary turbulence is homogeneous in both hori-
zontal directions, but not in the vertical. When turbulence is strongest, the flow is
approximately isotropic in the dissipation scales, but not in the energy-containing
scales. As turbulence decays, the effects of large-scale anisotropy become evident in
the dissipation range (Smyth & Moum 1999b). I examine the spatial structure of the
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dissipation range via eigenanalyses of the strain tensor, an approach that has been
employed profitably in the study of stationary, homogeneous turbulence (Kerr 1985,
1987; Ashurst et al. 1987; Vincent & Meneguzzi 1991; She et al. 1991; Tsinober et
al. 1992; Reutsch & Maxey 1992). (An interesting alternative approach is based on
the full deformation tensor, e.g. Soria et al. 1994.) The focus here is on the evolution
of statistical correlations between the scalar gradient field and the principal strains. I
examine the evolution of these aspects of dissipation-range structure from a configur-
ation characteristic of stably stratified, parallel flow, to a state of intense turbulence,
and back to the parallel state as turbulence decays. Results are tested for dependence
on the Reynolds, Richardson and Prandtl numbers.

Particular attention is paid to the evolution of the parameter q, which appears in
various theoretical forms for the passive scalar spectrum (e.g. Batchelor 1959; Gibson
& Schwarz 1963; Kraichnan 1968). This parameter represents the timescale on which
scalar gradients are sharpened by compressive strain, expressed as a multiple of the
Kolmogorov eddy turnover time. It turns out that q, as originally defined in terms of
the least eigenvalue of the strain tensor by Batchelor (1959), is remarkably constant
over a wide range of flow conditions, and that its value is very close to Batchelor’s
estimate of 2. However, this value is significantly smaller than the range of estimates
that have been obtained by fitting observed and computed scalar spectra to the
theoretical forms. (These spectrally-derived estimates will be referred to later as qB
and qK .) The same is true of subsequent theoretical estimates, which include q < 0.9
(Kraichnan 1968) and q = 1.68 (Newman & Herring 1979). Only the value q = 4.47,
proposed by Qian (1995), is consistent with observations, and the validity of the
theory on which that estimate is based has been questioned (McComb 1990).

A possible explanation for these discrepancies is found via consideration of the
effects of non-constant strain. The strain tensor at a material point can vary rapidly in
time (e.g. Pope 1990; Yeung, Girimaji & Pope 1990), so that the local scalar gradient
never attains the perfect alignment with the direction of maximum compression en-
visioned by Batchelor. Scalar gradients therefore experience strain that is compressive
on average, but less so than the compression represented by the least eigenvalue
of the strain tensor. These observations suggest the use of an effective compressive
timescale, qe, defined in terms of the average compression normal to an isoscalar
surface. Here, the value of qe is determined over a wide range of flow regimes,
which extends from the strongly-turbulent regime to flows in which turbulence is
modified by the effects of buoyancy and large-scale shear. The effective compressive
timescale is larger than the ideal value (q = 2) suggested by Batchelor (1959), and
is in satisfactory agreement with independent estimates made using both computed
spectra and geophysical turbulence measurements. I therefore propose that the scalar
gradient spectrum in turbulent flow is approximated by the theoretical spectrum of
Batchelor (1959) (or, better, the alternative suggested by Kraichnan (1968)) with q
replaced by qe.

I begin in § 2 by describing the numerical model used for the simulations and the
range of parameter values employed. In § 3, I give an overview of the time history of a
breaking KH wave: the growth of the instability, the development of turbulence, and
the final return to the laminar state. In § 4, I explore the statistics of the eigenvalues of
the strain tensor, and show how they depend on the degree of anisotropy induced in
the dissipation range by large-scale flow geometry. These analyses establish that the
dissipation range of the present simulated flows approaches an apparently universal
structure provided that the buoyancy Reynolds number is sufficiently large. These
results are therefore expected to be characteristic of turbulent flows in general. Section
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5 contains the main results of the paper. Statistics of the orientation of the scalar
gradient with respect to the principal strains are examined, and the implications for
the scalar gradient spectrum are discussed in detail. The present understanding of
the spectrum of scalar fluctuations in high Prandtl number flow, which originated
with Batchelor (1959), is extended to include the effect of imperfect alignment of the
scalar gradient due to non-persistence of the strain field. The resulting estimate of
the compression parameter qe is compared with values derived from my own and
other numerical simulations, as well as values estimated from laboratory, atmospheric
and oceanographic measurements. The results provide a plausible explanation for the
tendency of measured values to significantly exceed Batchelor’s estimate. Conclusions
are summarized in § 6.

2. Methodology
In this section, I describe the mathematical model that we use to represent tur-

bulence in a sheared, stratified environment. I then discuss the numerical methods
employed to solve the equations, and the initial conditions for the sequence of simu-
lations whose results are described in the remainder of the paper.

2.1. The mathematical model

The mathematical model employs the Boussinesq equations for velocity, density and
pressure in a non-rotating physical space measured by the Cartesian coordinates x, y
and z:

∂u

∂t
= u× (∇× u)− ∇Π + gθk̂ + ν∇2u, (1)

Π =
p

ρo
+K. (2)

Here, p is the pressure, ρo is a constant density scale and K = 1
2
u · u is the specific

kinetic energy. The thermodynamic variable θ represents the fractional specific volume
deviation, or minus the fractional density deviation, i.e. θ = −(ρ−ρo)/ρo, in which ρo
is a constant mean density. In a fluid where density is controlled only by temperature,
θ is proportional to the temperature deviation (with proportionality constant equal
to the thermal expansion coefficient). Since this work was motivated by applications
to thermally-stratified flow, we will occasionally refer to θ as the temperature. The
gravitational acceleration g has the value 9.8 m s−2, and k̂ is the vertical unit vector.
Viscous effects are represented by the usual Laplacian operator, with kinematic
viscosity ν = 1× 10−6 m2 s−1.

The augmented pressure field Π is specified implicitly by the incompressibility
condition

∇ · u = 0, (3)

and the scalar θ evolves in accordance with

∂θ

∂t
= −u · ∇θ + κ∇2θ, (4)

in which κ represents the molecular diffusivity of θ. Note that the evolution of θ
is governed by the same equation that describes the evolution of a passive scalar,
even though θ itself is not passive. In other words, any passive scalar that had the
same initial distribution as θ, the same diffusivity κ, and was mixed subsequently
by the same (buoyancy-modified) flow, would evolve in the same way. This variable
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therefore serves a dual purpose, first by imposing realistic buoyancy constraints on
the turbulence, and second by mixing in a manner that is characteristic of any scalar
quantity one might be interested in.

Periodicity is assumed in the horizontal dimensions:

f(x+ Lx, y, z) = f(x, y + Ly, z) = f(x, y, z), (5)

in which f is any solution field and the periodicity intervals Lx and Ly are constants. At
the upper and lower boundaries (z = ± 1

2
Lz), we impose an impermeability condition

on the vertical velocity:

w
∣∣
z=±Lz/2 = 0, (6)

and zero-flux conditions on the horizontal velocity components u and v and on θ:

∂u

∂z

∣∣∣∣
z=±Lz/2

=
∂v

∂z

∣∣∣∣
z=±Lz/2

=
∂θ

∂z

∣∣∣∣
z=±Lz/2

= 0. (7)

These imply a vertical boundary condition on Π:(
∂Π

∂z
− gθ

)∣∣∣∣
z=±Lz/2

= 0. (8)

2.2. Initial conditions

The model is initialized with a parallel flow in which shear and stratification are
concentrated in the shear layer, a horizontal layer surrounding the plane z = 0:

ũ(z) =
uo

2
tanh

2z

ho
, (9)

θ̃(z) =
θo

2
tanh

2z

ho
. (10)

The constants ho, uo and θo represent the initial thickness of the shear layer and the
changes in velocity and density across it. These constants can be combined with the
fluid parameters ν and κ and the geophysical parameter g to form three dimensionless
groups whose values determine the stability of the flow at t = 0:

Reo ≡ uoho

ν
, Rio ≡ gθoho

uo2
, P r ≡ ν

κ
. (11)

The initial macroscale Reynolds number, Reo, expresses the relative importance of
viscous effects. In the present simulations, Reo is of order a few thousand, large
enough that the initial instability is nearly inviscid. The bulk Richardson number,
Rio, quantifies the relative importance of shear and stratification. If Rio <

1
4
, the

initial mean flow possesses unstable normal modes (Miles 1961). The Prandtl number,
Pr, is the ratio of the diffusivities of momentum and temperature. (This is more
properly called the Schmidt number if θ is used to represent some scalar other than
temperature.)

In order to obtain a fully-turbulent flow efficiently, I add to the initial mean profiles
a perturbation field designed to excite the most-unstable primary and secondary
instabilities. The horizontal velocity perturbation is given by

û(x, z) =
uo

2

1

ko

(
− cos

2kox

ho
+ 2b cos

kox

ho

)
tanh

2z

ho
sech

2z

ho
, (12)
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where ko is the streamwise wavenumber of the fastest-growing eigenmode of the
parallel flow. The corresponding vertical velocity perturbation is determined from
continuity. This two-dimensional sinusoidal perturbation projects efficiently onto the
primary KH instability and the secondary pairing mode (e.g. Klaassen & Peltier 1989).
In order to excite three-dimensional secondary instabilities, the spanwise velocity is
given a quasi-random perturbation

v̂(x, y, z) =
uo

2
rv(x, y, z) sech2 2z

ho
, (13)

where rv(x, y, z) is a random function varying between −1 and 1, designed so that v̂
will have zero mean and zero vertical integral. Because of the latter condition, it is
possible to obtain ŵ(x, y, z), the perturbation vertical velocity field corresponding to
(12) and (13), simply by integrating (3) in the vertical. Finally, a random perturbation
is applied to the scalar field, namely

θ̂(x, y, z) =
θo

2
rθ(x, y, z) sech2 2z

ho
, (14)

where rθ is a random function with zero mean, varying between −1 and 1.
The initial condition is now defined by

θ = θ̃(z) + aθ̂(x, y, z), u = ũ(z) + aû(x, y, z),

v = av̂(x, y, z), w = aŵ(x, y, z), (15)

where a is a constant controlling the amplitude of the initial perturbation.

2.3. Numerical methods

Because the horizontal boundary conditions are periodic, discretization of the hori-
zontal differential operators is accomplished efficiently in Fourier space using fast
Fourier transforms. In the vertical direction, spatial discretization is done using
second-order, centred finite differences, in order to retain flexibility in the choice of
upper and lower boundary conditions. The largest-scale runs employ array sizes of
512× 64× 256. Although the geometry of the computational grid inevitably excludes
some modes that would be present at both large and small scales, it is designed to
accommodate those modes which contribute most to the dynamics of the turbulence,
allowing us to simulate flows with the highest possible Reynolds number for a given
memory capacity.

It is now generally recognized that a reliable DNS code must have grid spacing no
greater than a few (3–6) times the Kolmogorov length scale LK = (ν3/ε)1/4 in which
ε is the volume-averaged kinetic energy dissipation rate (e.g. Moin & Mahesh 1998).
For flows with Pr > 1, the Kolmogorov scale is replaced by the Batchelor scale:
LB = LK/Pr

1/2. In order to take advantage of this information, one must be able
to estimate ε+, the effective maximum value of the kinetic energy dissipation rate,
in advance. This is done by employing the scaling ε+ = cu3

o/ho. This type of scaling
for the dissipation rate is standard (e.g. Tennekes & Lumley 1972), but the value
of the proportionality constant depends on the definitions chosen for the velocity
and length scales. Test simulations have been conducted and have established the
value 6.5 × 10−4 for c. The grid spacing is then set to 2.5LB− (where LB− is the
estimated minimum Batchelor scale (ν3/ε+)1/4Pr−1/2). The smallest resolved scale is
approximately 5LB− during the most-turbulent phase of flow evolution (when LB−
is smallest). In addition to these a priori measures, computed fields are monitored
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visually for signs of underresolution effects. The present version of the model uses
isotropic grid resolution, i.e. dx = dy = dz.

The fields are stepped forward in time using a second-order Adams–Bashforth
method. Implicit timestepping of the viscous operators has turned out to be unnec-
essary, as the timestep is limited by the advective terms. For accuracy and numerical
stability, the timestep is limited in accordance with

∆t < 0.12 min
i=1,3

(
∆xi

U+
i

)
, (16)

in which U+
i is the maximum speed in the xi coordinate direction. For the present

application, the minimum invariably occurs for the streamwise direction i = 1. At
each timestep, the augmented pressure field is obtained as the solution of a Helmholtz
equation which is designed to force the flow to be non-divergent at the next timestep.
To reduce aliasing effects, the upper 16% of wavenumbers in each spatial dimension
are filtered out of the velocity fields every 1–50 timesteps, depending on the amount of
energy present in those modes. This filtering also serves to remove contamination by
small-scale pressure modes which arise due to the choice of vertical discretization. The
energy removed by filtering is monitored to ensure that it remains small (rarely more
than a few percent, never more than 20%) compared with the energy removed by
the molecular viscosity term. In the present application, selected scalar quantities are
saved at every timestep, while the full three-dimensional fields are saved at intervals
of 10ho/uo.

2.4. Parameter values

The model equations can be non-dimensionalized using uo, ho and θo as scales for
velocity, length and fractional density fluctuation. The non-dimensional equations are
completely specified by the parameter set (Pr, Rio, Reo), and the effects of variations in
the values of these three parameters will be of primary concern here. Before discussing
them further, however, I will first describe choices for the secondary parameters that
appear in the problem.

The boundary conditions, once non-dimensionalized, introduce three additional
parameters: Lx/ho, Ly/ho and Lz/ho. Choices for these parameter values must balance
the need to maximize Reynolds number with the need to minimize boundary effects.
Fortunately, a great deal is known about the large-scale geometry of KH billows,
and this allows one to optimize the choice of domain dimensions (e.g. Caulfield &
Peltier 1994; Werne & Fritts 1999). These dimensions are based primarily on results
from linear stability analyses of the parallel flow (e.g. Hazel 1972; Smyth & Peltier
1989), two-dimensional nonlinear simulations with various domain sizes (Smyth &
Peltier 1993) and secondary stability analyses of large-amplitude, two-dimensional
KH waves (Klaassen & Peltier 1991). For all runs, I choose Lx/ho = 4π/koho = 14.0,
in order to allow for a single pairing of the primary KH wavetrain. This imposes
no significant restriction on the flow evolution as long as Rio is not too small.
Accordingly, I keep Rio > 0.08. The vertical domain size Lz/ho is set to 6.95 for all
cases. (More recent simulations with Lz/ho = 10.4 reveal no significant difference in
the quantities considered here.) The spanwise domain size is given one of two values:
Ly/ho = 3.50 or 1.75, which allow for either four or two (approximate) wavelengths
of the dominant secondary instability (Klaassen & Peltier 1991). I believe that two
wavelengths is sufficient; four wavelengths were employed in selected runs as a check
on this assumption.

The flow evolution is also affected by the initial conditions. Once non-
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Run R12P1 R31P1 R04P7 R08P1 R06P1 R08P4 R21P1 R12P4 R08P7

Nx 256 512 256 256 256 512 512 512 512

Ny 64 64 32 64 64 64 64 64 64

Nz 128 256 128 128 128 256 256 256 256

Lx (m) 3.29 5.24 1.96 3.29 3.29 3.30 5.24 3.29 2.73

Ly (m) 0.82 0.65 0.25 0.82 0.82 0.41 0.66 0.41 0.34

Lz (m) 1.63 2.62 0.98 1.63 1.63 1.64 2.60 1.63 1.36

∆x3 (10−2m) 1.293 1.033 0.773 1.293 1.293 0.643 1.023 0.643 0.533

ho (m) 0.236 0.375 0.141 0.236 0.236 0.236 0.375 0.236 0.196

uo (10−3 m s−1) 8.34 13.27 4.98 8.34 8.34 8.36 13.27 8.34 8.34

θo (10−6 K) 2.41 3.83 1.81 3.61 4.81 3.70 5.75 2.41 2.00
Pr 1 1 7 1 1 4 1 4 7

Rio 0.08 0.08 0.08 0.12 0.16 0.12 0.12 0.08 0.08

Reo 1965 4978 701 1967 1967 1977 4978 1967 1354

Ref 12281 31113 4381 8196 6147 8238 20742 12294 8463

Table 1. Parameter values for the simulations. In all cases, ν = 1.0× 10−6 m2 s−1.

dimensionalized by uo, ho and θo, these are specified by the wavenumber ko, the
amplitude parameters a and b and by the form of the random noise fields rv and rθ .
I ignore the slight dependence of ko on the Richardson number (Hazel 1972) and
use ko = 0.90/ho for all simulations. The amplitude parameter a appearing in (15)
is given the value 0.05, which ensures that the simulation approximates the growth
of infinitesimal perturbations, thus minimizing dependence on the precise form of
the perturbations. The parameter b, from (12), is given the value 0.4177. This choice
dictates that the subharmonic mode will be initialized with one-half the kinetic energy
of the primary. Auxiliary runs were conducted to assess the influence of the random
noise fields. Although the detailed evolution of the flow is highly sensitive to the
initial noise field, the statistical quantities that are of primary concern here are not.

Let us now return our attention to the primary parameters of the problem, namely
the Reynolds, Richardson and Prandtl numbers. In the present paper, I describe
results from a sequence of nine simulations (table 1) designed to explicate the effects
of these three parameters. The first two parameters change as the flow evolves;
the third is a property of the fluid and remains constant in time. To explicate the
relationships between the time-evolving parameters and their initial values, let us
look briefly at the evolution of the Richardson and Reynolds numbers in a typical
simulation (figure 1). (These aspects of the flow evolution are described in much
greater detail in Smyth & Moum 1999a.)

To define Re and Ri for t > 0, one must first define a scale thickness for the evolving
mixing layer. This is done in two ways. First, the horizontally-averaged scalar profile,
θ̄(z), is fitted to a piecewise linear function of the form

θpl(z) =
θo

2


1 if z > 1

2
hθ,

z/ 1
2
hθ if − 1

2
hθ 6 z 6

1
2
hθ,

−1 if z 6 − 1
2
hθ,

(17)

via least squares and thus determines the time-dependent scale thickness for the
scalar profile, hθ(t). A similar procedure on the horizontally-averaged streamwise
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Figure 1. Bulk parameters of the mixing layer versus time for a typical simulation, R21P1.
(a) Velocity scale depth hu (solid curve) and density depth hθ (dashed curve). (b) Reynolds number
based on the layer depth. The horizontal line indicates the estimate Ref = 20742. (c) Bulk Richardson
number based on the layer depth (solid curve), minimum gradient Richardson number based on
horizontally-averaged profiles (dashed curve). Horizontal lines indicate Ri = 0 (solid) and Ri = 1

4
(dashed).

velocity delivers a scale thickness for that profile, namely hu. These piecewise linear
approximations are chosen because they resemble the mean profiles in the fully
turbulent regime. Earlier in the evolution, the profiles are closer to the hyperbolic
tangent shapes (9) and (10). In particular, hθ and hu do not equal ho at t = 0. Although
hθ and hu asymptote to similar values, hθ grows more quickly than hu at early times
(figure 1a).

An overall thickness scale for the mixing layer is now defined as h(t) = 1
2
(hθ + hu),

and the time-dependent Reynolds and bulk Richardson numbers are based on that
scale:

Re(t) =
uo

ν
h(t), Ri(t) =

gθo

u2
o

h(t). (18)

Note that Re and Ri depend on time only through the layer depth, since the net
changes in velocity and temperature across the layer are constant. After growing
rapidly with the initial instability, the Reynolds number asymptotes towards an
approximately-constant value as the flow becomes fully turbulent (figure 1b). In
this asymptotic regime, turbulent growth of the mixing layer has been effectively
arrested by gravity. Continued slow spreading, due mostly to molecular diffusion of
the mean profiles, is eventually halted by boundary proximity effects. The analyses are
terminated before this point. The bulk Richardson number increases to an asymptotic
value close to one half. In contrast, the minimum gradient Richardson number (Rimin)
evolves in a complex fashion, often becoming negative during the transition phase as
the KH waves overturn.

The asymptotic value of 1
2

for the bulk Richardson number is a result common to
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all of my simulations (to within about 10%), despite a factor of two range in Rio.
Similarly, the late-time value of Rimin does not vary much from the value 1

4
for any Rio.

This means that the main effect of Rio, once the transition to turbulence is complete,
is to limit the growth of the turbulent layer, and thus the value of Re that is eventually
attained. This offers us a valuable simplification: for the flows considered here, we can
characterize the turbulent regime using a single parameter, the asymptotic value of the
Reynolds number, in place of the two parameters Rio and Reo. A characteristic value
for Re(t) in the turbulent regime may be estimated a priori using the fact that Re(t) and
Ri(t) are both proportional to the layer thickness, h(t), and are therefore proportional
to each other. In the asymptotic regime, Ri ≈ 1

2
, and the corresponding value for Re

is Ref = Reo/2Rio. The estimate Ref is shown by the dotted line on figure 1(b).
In table 1 and throughout this paper, simulations are labelled in terms of the two

most important parameters for the turbulent regime, Ref and Pr. The pattern is
‘RxxPy’, where ‘xx’ is Ref/1000 and ‘y’ is Pr. I will frequently employ run R31P1 to
exemplify strong turbulence, R21P1 as an example of a flow that spans a range of
turbulent and laminar regimes, and R08P1 as an example of weak turbulence. Con-
clusions of a more general nature will be based on results from all nine simulations.
Results are presented in dimensional form, defined by setting ν = 1.0× 10−6 m2 s−1, a
typical value for water.

3. The Kelvin–Helmholtz life cycle
In this section, I give an overview of the evolution of turbulence in selected

simulations. The objectives are to provide a conceptual foundation for further analyses,
and to establish the degree of isotropy present in the dissipation subrange under
different conditions. The turbulence life cycle is illustrated qualitatively in figure 2
by means of isosurfaces of the deformation rate, d = ((∂ui/∂xj)(∂ui/∂xj))

1/2, shown
at selected instants in the time evolution of the event. The total physical duration
of this simulation is about three hours. In the first frame, it is evident that the
initially horizontal layer of vorticity has been concentrated into a pair of KH vortices
which are now in the process of merging. At this stage, the flow is almost entirely
two-dimensional. The dominant secondary instability has spanwise wavelength equal
to one-fourth the spanwise extent of the domain. The signature of this instability
is evident in figure 2(b). The flow has become significantly three-dimensional, and
the fourfold periodicity in the spanwise direction is visible (though it is complicated
by the presence of lower harmonics). At the stage shown in figure 2(c), the flow is
highly disordered, but still exhibits significant symmetry on large scales. In the last
stages of billow evolution (figure 2d), dissipation is concentrated into quasi-horizontal
strips which tend to be thin in the vertical direction and elongated in the streamwise
direction. These structures are reminiscent of the ‘pancake vortices’ often observed in
stratified turbulence (e.g. Majda & Grote 1997), but clearly reflect the influence of
the background shear. The latter not only contributes directly to the dissipation, but
also preferentially amplifies streamwise perturbations (Smyth & Moum 1999b).

These processes have been described in detail by Metcalfe et al. (1987) and Moser
& Rogers (1993) for the unstratified case and by Caulfield & Peltier (1994), Fritts
et al. (1996), Cortesi et al. (1999) and Smyth & Moum (1999a) for stratified flow.
The example illustrated in figure 2 is one in which the Reynolds number remains
relatively small. The higher-Re simulations are similar on the large scales, but develop
highly disordered small-scale structures that are most readily examined via statistical
analyses.



Dissipation-range geometry in sheared stratified turbulence 219

(a)

(b)

(c)

(d )

Figure 2. Isosurfaces of the deformation rate, d, for run R08P1. (a) t = 1272 s, d = 0.011 s−1;
(b) t = 2404 s, d = 0.036 s−1; (c) t = 3252 s, d = 0.030 s−1; (d) t = 6647 s, d = 0.008 s−1. Gourad
shading is used to clarify three-dimensional structure. Graininess in the image represents pixel
resolution; grid resolution is much finer. Values of the buoyancy Reynolds number are Reb = 7
(a), 27 (b), 52 (c) and 4 (d).

In figure 3, I illustrate the time-evolution of the three components of the volume-
averaged perturbation kinetic energy, K ′ = 〈 1

2
u′2〉 + 〈 1

2
v′2〉 + 〈 1

2
w′2〉, where primes

denote fluctuations about the mean (horizontally-averaged) flow. In order to isolate
the most-turbulent regions of the flow and to facilitate the computation of stream-
wise wavenumber spectra, volume averages are taken over a thin slab centred on the
horizontal midplane of the computational domain, specifically −Lz/16 < z < Lz/16.
Throughout the paper, this volume average is indicated by angle brackets. I consider
the three components of K ′, Kx = 〈 1

2
u′2〉, Ky = 〈 1

2
v′2〉 and Kz = 〈 1

2
w′2〉, separately. In

the early stages of flow evolution, the flow is nearly two-dimensional. The spanwise
component of the three-dimensional noise field with which the simulation was initial-
ized decays quickly, as is evidenced by the rapid initial decrease of Ky . The horizontal
and vertical components grow to a maximum, then enter an oscillatory regime in
which the elliptical KH vortex nutates with respect to the mean flow (Klaassen &
Peltier 1985a). As the two-dimensional wave reaches maximum amplitude, it becomes
unstable to three-dimensional disturbances; beyond this point, the spanwise energy
grows rapidly.
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Figure 3. Components of the domain-averaged perturbation kinetic energy for run R21P1: Kx

(solid), Ky (dashed) and Kz (dotted) versus elapsed time. Also shown are the buoyancy and
shear Reynolds numbers Reb = 〈ε〉/νN2 (upper shaded curve) and Res = 〈ε〉/νS2 (lower shaded
curve). The kinetic energy dissipation rate 〈ε〉 is computed as a volume average over the layer
−Lz/16 < z < Lz/16. The velocity and density gradients needed to define N and S are averaged
over the same layer.

Also growing during this initial phase are two measures of the instantaneous
Reynolds number, both of which will be of central importance in the analyses to
follow. The buoyancy Reynolds number is defined by Reb = 〈ε〉/νN2, and is a measure
of the spectral separation between the Ozmidov length scale LO = (〈ε〉/N3)1/2 (above
which eddies are strongly deformed by stratification) and the Kolmogorov scale
LK = (ν3/〈ε〉)1/4 (below which eddies are strongly damped by viscosity). The ratio of

LO to LK is given by Re
3/4
b . The quantity ε that appears in the foregoing expressions

is the rate of viscous dissipation of kinetic energy, given at each point in space by

ε = 2νSijSij , (19)

in which

Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(20)

is the strain tensor, about which more will be said later. The bulk stratification is
represented by N2 = g〈dθ/dz〉.

One may also estimate the length scale above which eddies are rapidly strained by
the background shear: LC = (〈ε〉/S3)1/2, in which S is the magnitude of the mean
vertical shear, 〈du/dz〉. (The designation LC is employed in recognition of the early
use of this length scale by Corrsin, e.g. Corrsin 1958.) The spectral separation between
this and the Kolmogorov scale is represented by the three-fourths power of the shear
Reynolds number, Res = 〈ε〉/νS2. In shear-driven turbulence, one expects Res to be
smaller than Reb, since the ratio Res/Reb is just the gradient Richardson number, and
that quantity must be smaller than O(1) to sustain turbulence. Both Reb and Res tend
to be at least an order of magnitude smaller than the macroscale Reynolds number,
Re. Also, after attaining maximum amplitude at the transition to turbulence, Reb and
Res decay, while Re continues to grow slowly as the mixing layer thickens (figure 1b).

The spanwise kinetic energy reaches its maximum near t = 2400 s. That maximum
is significantly smaller than the current values of Kx and Ky . Subsequently, all three
components of the kinetic energy decay monotonically, as do Reb and Res. The vertical
kinetic energy Kz , which was similar in magnitude to Kx during the two-dimensional
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Figure 4. Volume-averaged direction cosines of the vorticity vector, ω = ∇ × u, versus time. The
direction cosines are computed as |ωx/ω| (solid curve), |ωy/ω| (dashed curve), and |ωz/ω| (dotted
curve), in which ω represents the magnitude of ω. Each quantity is volume-averaged over the layer
−Lz/16 < z < Lz/16. Horizontal dashed lines indicate the RMS value for an isotropic vector field.
Data shown are from simulations R21P1 (a), R31P1 (b) and R08P1 (c). Shaded curves represent
Reb and Res as in figure 3. Part (c) corresponds to the simulation illustrated in figure 2; symbols
below the time axis indicate the times chosen for the latter figure. At two points during R31P1,
large-scale overturning leads to N2 < 0 in the central layer. In these flows, LO is effectively infinite,
and the maximum eddy size is determined by the layer depth, h. Accordingly, one defines Reb as
(h/LK )4/3 for these cases.

phase, decays rapidly until it reaches a magnitude similar to that of Ky (at t = 3600 s).
During the long period of viscous decay, Kz and Ky remain nearly equal, while Kx

decays slightly more slowly. Kx is an order of magnitude larger than the other two
components by the end of the simulation.

Comparison of Kx, Ky and Kz shows clearly that the large scales, in which kinetic
energy resides, are highly anisotropic. The mean shear selectively enhances motions
in the streamwise direction, while gravity damps vertical motions. At smaller scales,
however, one expects to find a regime in which the anisotropy of the large scales
is not evident. Such a flow regime is commonly supposed to represent a ‘universal’
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Figure 5. Volume-averaged direction cosines of the velocity vector u. Data shown are from
simulations R21P1 (a), R31P1 (b) and R08P1 (c). Solid curve: |u|/U; dashed curve: |v|/U; dotted
curve: |w|/U, in which U = |u|. Also shown are the buoyancy and shear Reynolds numbers. All
quantities are volume-averaged over the layer −Lz/16 < z < Lz/16.

structure which is to some degree independent of the large-scale flow geometry. I next
demonstrate that such a regime exists in these simulated flows.

While kinetic energy is carried by large-scale motions, vorticity resides in the smaller
scales. This small-scale regime, which also provides the dominant contribution to
kinetic energy dissipation, scalar gradients, and scalar variance dissipation, is referred
to as the dissipation range. The behaviour of the dissipation range is illustrated in
figure 4, which shows the root-mean-square (hereafter RMS) volume averages of
the direction cosines of the vorticity vector. If that vector is oriented randomly in
space, the three direction cosines are equal and take the value

√
1
3
. As the two-

dimensional KH instability is growing, the vorticity is aligned almost entirely in the
spanwise direction (figure 4a, t < 1800 s), but the streamwise and vertical components
grow rapidly during the transition to turbulence. There follows a phase during
which the three cosines are approximately equal, suggesting that the dissipation
range is approximately isotropic. As turbulence decays, the vorticity relaxes back to
the spanwise orientation characteristic of parallel flow. Figure 4(b) shows the same
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Figure 6. Volume-averaged direction cosines of the scalar gradient ∇θ. Data shown are from simu-
lations R21P1 (a), R31P1 (b) and R08P1 (c). Solid curve: |∂θ/∂x|/|∇θ|; dashed curve: |∂θ/∂y|/|∇θ|;
dotted curve: |∂θ/∂z|/|∇θ|. Also shown are the buoyancy and shear Reynolds numbers. All quantities
are volume-averaged over the layer −Lz/16 < z < Lz/16.

quantities during another simulation, one in which parameters were chosen so as to
maximize the Reynolds number. In this case, the isotropic phase lasts much longer;
the three direction cosines do not begin to diverge until shortly before the end of
the simulation. The third example (figure 4c) represents a case of relatively low Reb,
in which isotropy is approached only for a very brief interval after which turbulence
decays. (This third example is the simulation illustrated in figure 2.)

For comparison, figure 5 shows the direction cosines of the velocity vector for
the same three simulations. In no case does this vector field approach isotropy,
illustrating once again the anisotropy of the large scales. The direction cosines of
the scalar gradient (figure 6) behave similarly to those of the vorticity, although they
relax from the isotropic state slightly faster than do their counterparts in figure 4.
As in figure 4, the isotropic state coincides with large values of the buoyancy and
shear Reynolds numbers. The vertical dashed line on figure 6 indicates t = 4242 s. In
the analyses to follow, data from this point in this particular simulation will be used
frequently to exemplify the strongly turbulent regime.
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It has been shown that, when Reb and Res are sufficiently large, turbulent KH
billows develop a dissipation-range in which flow statistics of interest do not reflect
the anisotropy present in the large scales. The issue of dissipation-range isotropy is
the subject of vigorous debate (e.g. Browne, Antonia & Shah 1987; Thoroddsen &
Van Atta 1996), and several authors have pointed out spectrally non-local interactions
through which large-scale anisotropy may be reflected in the small scales (e.g. Yeung
& Brasseur 1991; Smyth 1992; Mahrt & Howell 1994; Yeung, Brasseur & Wang
1995). The present results do not indicate that such mechanisms are absent, only
that these flows approach an asymptotic state, at high Reb and Res, in which the
dissipation range is independent of the large scales to a significant degree. The degree
of isotropy in the present simulations is discussed in detail in Smyth & Moum (1999b),
where it is shown via more stringent tests that some degree of anisotropy remains in
the dissipation range. The spatial structures of the strain and scalar gradient fields,
and their reflection in the form of the scalar gradient spectrum, will be my focus in
the remainder of the present paper.

4. Geometry of the strain tensor
The strain tensor (20) has three real eigenvalues, which are traditionally denoted,

from largest to smallest, α, β and γ. These quantities are the principal strains. In an
incompressible flow,

α+ β + γ = 0, (21)

so that α > 0 (signifying expansion) and γ < 0 (signifying compression). The interme-
diate eigenvalue, β, can have either sign. The value of β is a fundamental geometrical
property of the turbulence. Positive values of β denote expansion in two dimensions,
so that fluid elements tend to be flattened into sheets. When β < 0, expansion occurs
in only one dimension, so that fluid elements tend to be extruded into filaments.

The kinetic energy dissipation rate may be written in terms of the strain tensor:

ε

ν
= 2SijSij = 2(α2 + β2 + γ2). (22)

This leads to a natural scaling for the eigenvalues in terms of the strain rate of
Kolmogorov eddies: (α, β, γ) = (α′, β′, γ′)×√ε/ν. In figure 7(a), I show the probability
distribution functions for the scaled eigenvalues. This example is from a strongly
turbulent flow (simulation R31P1 at t = 4242 s, cf. figure 6). The intermediate strain,
β ′, exhibits a marked tendency towards positive values, with mean value 0.08. This
distribution function for β′ is familiar from previous studies of isotropic turbulence
(Kerr 1987; Ashurst et al. 1987; She et al. 1991). More detailed analyses show that the
tendency towards positive β′ is stronger in highly dissipative regions of the flow, as has
also been found previously (e.g. She et al. 1991). The extensional strain eigenvalue,
α′, is bounded from above by the maximum value 1/

√
3, while the compressional

strain, γ′, tends to lie close to its minimum value, −1/
√

3. The modes of α′, β′
and γ′ are in the proportion (3.1:1:−4.2). For comparison, Ashurst et al. (1987)
quoted the ratio (3:1:−4), while the wind tunnel experiments of Tsinober et al. (1992)
yielded (3.1:1:−3.8). Slight differences between these results are most likely due to
the vagaries of the mode as a statistical estimator. This close comparison with results
from studies of very different flow types indicates that, in the most turbulent regions
of space and time, my simulated dissipation range geometry approaches a universal
structure.
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Figure 7. Histograms of the eigenvalues of the strain tensor scaled by (a) local and
(b) volume-averaged dissipation rates, taken from run R31P1 at t = 4242 s, in the layer
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Res as in figures 3 and 4.

The ultimate goal of this work is to investigate the role of the strain field in shaping
the scalar spectrum (cf. § 5). For this purpose, one must understand the statistics of
the strain field separately from those of the dissipation rate. Therefore, a more
relevant scaling for the eigenvalues is that based not on local values of ε but rather
on a single, volume-averaged value, 〈ε〉, i.e. (α, β, γ) = (α̃, β̃, γ̃) ×√〈ε〉/ν. Probability

distribution functions for α̃, β̃ and γ̃ are shown in figure 7(b). Again, the intermediate
strain exhibits a tendency towards positive values. The distribution function for
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buoyancy Reynolds number, for all simulations. Symbol sizes indicate Prandtl number, with smaller
symbols representing Pr > 1. The time is indicated by shading, as shown on the bar above (a).
Horizontal lines indicate the mean values from figure 7(b).

the extensional strain eigenvalue, α̃, is highly skewed (in fact, it is approximately
lognormal), with most values lying between 0 and 1. The compressional strain, γ̃, is
more skewed than α̃, with values often lying to the left of −1. The arithmetic means
of these scaled strain components are 〈α̃〉 = 0.38, 〈β̃〉 = 0.09 and 〈γ̃〉 = −0.47.

This project differs from those quoted above in that I do not attempt to maintain
stationary turbulence, but rather allow the flow to evolve to and from the turbulent
state in a manner typical of geophysical flows. As a result, I am able to examine the
way in which the principal strains reflect these changes in the character of the flow.
In simulation R21P1 (figure 8), the volume-averaged principal strains begin with the
values (0.5, 0.0,−0.5) characteristic of parallel shear flow. During the initial growth
of the KH instability (0 < t < 1800 s), 〈β̃〉 remains close to zero, while 〈α̃〉 and
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〈γ̃〉 decrease sharply in magnitude. This is because the flow remains two-dimensional
while 〈ε〉 increases. As the secondary instability grows and the flow becomes turbulent

(1800 < t < 3000 s), 〈α̃〉 and 〈β̃〉 and 〈γ̃〉 approach values similar to those quoted
above for the highly isotropic case. The strains then return smoothly to their original
values as the flow relaxes back towards the parallel state.

The time dependence of the principal strains is, in fact, closely tied to the time
dependences of the buoyancy and shear Reynolds numbers defined in § 3 (shaded
curves on figure 8). Figure 9 shows scatterplots constructed using data from all nine
simulations, illustrating the dependence of the scaled principal strains on Reb. Before
the transition to turbulence (light-shaded circles), the scaled principal strains vary
without any apparent pattern while Reb increases. Transition occurs as Reb reaches
its maximum, after which 〈α̃〉, 〈β̃〉 and 〈γ̃〉 collapse onto well-defined functions of
Reb as the latter decreases (dark-shaded circles). At large Reb, there is clear evidence
of asymptotic behaviour, i.e. one expects that larger-scale simulations, which would
attain higher Reb after transition than those attained here, would manifest values
close to those suggested by the shaded circles on figure 9 (〈α̃〉 ≈ 0.38; 〈β̃〉 ≈ 0.09;
〈γ̃〉 ≈ −0.47). There is no evident dependence on the initial values Reo and Rio, or on
Pr. Similar analyses using Res as the abscissa (not shown) differ only in the fact that
Res tends to be smaller than Reb.

I propose the following interpretation of these results. When Reb is sufficiently
large, the effects of large-scale shear and buoyancy are restricted to scales larger than
the dissipation subrange (where strain resides), so that the strain-carrying eddies are
independent of the large-scale anisotropy. Further increases in Reb therefore have no
effect on the geometry of the dissipation subrange. While principal strains in the low-
Reb regime are characteristic of the parallel flow from which this turbulence evolves,
strains in the high-Reb regime are independent of the large-scale geometry and thus
characteristic of all highly-turbulent flows. The results for the high-Reb regime are
entirely consistent with those of the previous investigations cited above, despite the
fact that the latter studies spanned a wide variety of flow types. This agreement argues
strongly for the universality of the strain eigenvalues in the limit of large Reb.

5. Compressive strain and the scalar gradient spectrum
I introduce this section with a brief look at scalar spectra from the simulations

(§ 5.1), then examine the statistical relationships between the strain tensor and the
scalar gradient that influence the shapes of those spectra (§ 5.2). I find a revised value
for the Batchelor’s parameter q that takes account of the time dependence of the
strain, and compare the results with simulated and observed scalar spectra (§ 5.3).

5.1. Spectra of streamwise scalar gradients in isotropic and anisotropic flow regimes

The focus in this subsection will be on spectra of streamwise variability, since that
direction is homogeneous and is the direction in which the domain (and hence
spectral) extent is largest. Let us begin by defining the quantities that will be used to
normalize the spectra. An approximation to the scalar variance dissipation rate is

〈χx〉 = 6κ

〈(
∂θ

∂x

)2
〉
. (23)

This approximation is exact in the isotropic limit (Hinze 1975). For many of the cases
to be examined here, the isotropic limit is not approached, and the approximation
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Figure 10. One-dimensional scalar spectra as functions of streamwise wavenumber. Both spectra
and wavenumber are non-dimensionalized using the Batchelor scaling, then averaged over the
middle one-eighth of the vertical extent of the computational domain, −Lz/16 < z < Lz/16. The
spectra are multiplied by the cube of the scaled wavenumber so as to represent contributions to the
scalar gradient in variance-preserving form. Dotted and dashed curves represent the Batchelor and
Kraichnan theoretical forms, with values for qB and qK obtained by a least-squares fit to the model
spectra. (a) R31P1, t = 4242 s, (b) R21P1, t = 7430 s, (c) R12P4, t = 3111 s.

given above underestimates the true dissipation rate, 〈χ〉 (Smyth & Moum 1999b).
The use of (23) in place of its exact counterpart facilitates interpretation of the
results by ensuring that the spectra are at least normalized in a manner consistent
with the theoretical forms to which they are compared. I also employ the Batchelor
wavenumber, kB = (〈ε〉/κ2ν)1/4. The scalar spectrum, ψ(k), is now defined using the
normalization

2π

Lx

Nx/2+1∑
i=1

ψi = θ2 (24)
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where ψi = ψ(ki)) and the overbar denotes a horizontal average. The spectrum is
non-dimensionalized using the Batchelor scaling

ψ̃ =
ψ

〈χx〉/κk3
B

, k̃ =
k

kB
. (25)

Examples are shown in figure 10.
Batchelor (1959) derived a scalar spectrum for a fluid having Pr � 1 by assuming

that scalar gradients were sharpened by a constant, compressive strain. The corre-
sponding one-dimensional scalar gradient spectrum was given by Gibson & Schwarz
(1963):

ψ̃Bk̃
2

=

(
qB

2

)1/2


β( 1

2
Prq2

B)−1/3ζ1/3 if ζ 6 ζ∗,

ζe−ζ2/2 − ζ2

∫ ∞
ζ

e−x2/2 dx if ζ > ζ∗.
(26)

Here, β ≈ 0.6 is the constant in the Corrsin–Obukhov spectrum for a passive
scalar in the inertial-convective subrange (Obukhov 1949; Corrsin 1951). The scaled
wavenumber ζ is defined as (2qB)1/2k̃, and the critical wavenumber ζ∗ is determined by
the requirement of continuity. The constant qB was estimated by Batchelor to be equal
to the inverse of the spatially-averaged least eigenvalue of the strain tensor, scaled
by (〈ε〉/ν)1/2, or about 2. The latter quantity is referred to here as q. Comparison
of the Batchelor spectrum with measured spectra generally indicates that the value
2 is an underestimate of qB . Gargett (1985) has found values ranging from 4 to 12,
and has suggested on that basis that qB should not be regarded as universal. Gibson
(1968b) suggested bounds on q of [

√
3, 2
√

3]〈ε〉1/2/〈ε1/2〉. The ratio 〈ε〉1/2/〈ε1/2〉 is at
least unity and increases with increasing intermittency (also see Gibson 1982). Gibson
(1987) has suggested that the large values of qB obtained by Gargett (1985) are due
to this effect. In the present simulations, it will be shown that q remains close to 2,
and that values of qB in excess of 2 are due to non-persistence of the strain field.

Kraichnan (1968) and Mjolsness (1975) rederived the scalar gradient spectrum
allowing for spatial intermittency in the strain rate, and obtained

ψ̃Kk̃
2

=

(
qK

2

)1/2
{
β( 1

2
Prq2

K)−1/3ζ1/3 if ζ 6 ζ∗,

ζe−31/2ζ if ζ > ζ∗,
(27)

where qK is an adjustable constant, ζ = (2qK)1/2k̃, and ζ∗ is again determined
by continuity. Bogucki et al. (1997) have shown that scalar spectra from DNS of
homogeneous, isotropic, stationary turbulence fit the Kraichnan form (27) better than
the Batchelor form (26).

The constants qB and qK correspond to the timescale on which compressive strain
acts to sharpen scalar gradients, non-dimensionalized by (〈ε〉/ν)1/2. In the following
subsection, I will calculate that timescale explicitly. Here, I obtain qB and qK via
a nonlinear least-squares fit to the scalar spectrum, in which I minimize the error
functional

eB =

Nx/2+1∑
i=1

k̃
2

i (ψ̃i − ψ̃Bi)2 (28)

(and similarly for qK). To avoid contamination by the large-scale flow, which is always
anisotropic, I do not attempt to fit the portion of the spectrum for which k̃ < 0.1. An
estimate of the uncertainty in this curve fitting procedure is obtained by repeating the
calculation using a slightly different estimate of the central tendency of the spectrum
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at each wavenumber. Spectra are again averaged over both horizontal coordinates,
but I now combine the results at different z by taking the median rather than
the mean. This quantifies the effect that a slightly different, though still reasonable,
estimate of the spectrum has on the fitted value of qB (or qK).

In the example shown in figure 10(a), qB and qK have the values 5.12± 0.22 and
7.06± 0.30, respectively. The Kraichnan spectrum fits the model results considerably
better than does the Batchelor spectrum. This finding is consistent with the results
of Bogucki et al. (1997), who found superior fits to the Kraichnan spectrum in
DNS of stationary, isotropic, homogeneous turbulence. Note in particular that the
low-wavenumber range (which was excluded from the least-squares fit) exhibits a
clear k−1 dependence (i.e. a slope of +2). Figure 10(b) shows an example from a
flow at considerably lower Reb. Here, the fit to the theoretical spectra is very poor.
This is not surprising, since one expects that the dissipation range will be strongly
influenced by buoyancy and large-scale shear in this parameter regime. Note also that
the uncertainties in qB and qK are large (1.03 and 1.38, respectively), indicating that
the fitted values are strong functions of the details of the fitting procedure. The third
example is a case of moderate Reb and high Pr (Pr = 7). The fit to the Kraichnan
spectrum is once again very good, with value of 7.95± 0.30 for qK .

The results shown in figure 10 are representative of the decay phase for all of
the simulations. For small Reb, the spectrum rolls off more slowly than either of the
theoretical forms, and the resulting estimates of qB and qK are large and imprecise.
The appearance of strong signals at small scales in such cases, e.g. figure 10(b), is an
artifact of the approximation (23), which tends to increase ψ̃ to compensate for weak
gradients in the streamwise direction when the flow is highly anisotropic. When Reb
is sufficiently large, however, the data fit the Kraichnan spectrum very closely, with
values of qK ranging between 6 and 9.

5.2. Effects of non-constant strain

In any flow, the strain field acts to tilt scalar gradients towards an orientation parallel
to the compressive eigenvector of the strain tensor. Batchelor’s estimate for qB was
based on the assumption that the strain field at a material point evolves slowly
compared with the strain rate itself. In such a circumstance, the strain rate may be
treated as constant in time, with the effect that scalar gradients remain parallel to the
local direction of compressive strain, and thus grow exponentially with growth rate
−γ. Since the non-dimensional strain rate 〈γ̃〉 = 〈γ〉/√〈ε〉/ν, is approximately − 1

2
, the

non-dimensional compressive timescale, q = −1/〈γ̃〉, is approximately 2 (Batchelor
1959).

In reality, the assumption of constant strain is a poor one (e.g. Pope 1990). Strain
fields evolve rapidly enough that scalar gradients do not maintain the ideal orientation
described above, and therefore do not grow at the optimal rate −γ. Instead, gradients
grow at the rate −γe, where the effective compressive strain γe is given at each point
in space by

γe =
∇θ · S∇θ
∇θ · ∇θ = αC2

θα + βC2
θβ + γC2

θγ. (29)

Here, Cθα, Cθβ and Cθγ are the cosines of the angles between ∇θ and the principal

axes α̂, β̂ and γ̂, respectively. In the limit (Cθα, Cθβ, Cθγ) → (0, 0, 1), γe approaches
the ideal value γ. In general, however, |γe| < |γ|. In the opposite limit, in which
∇θ is oriented randomly with respect to the principal axes, 〈γe〉 = 0. The effective
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Figure 11. Probability density distributions for the direction cosines of the scalar gradient: Cθα
(solid), Cθβ (dashed) and Cθγ (dotted). Results pertain to the central layer of the highly turbulent
case, run R31P1 at t = 4242 s. Bracketed numbers indicate the RMS average.

compressive timescale, non-dimensionalized as usual by (〈ε〉/ν)1/2, is given by

qe =
−1

〈γ̃e〉 =
−√〈ε〉/ν
〈γe〉 > q. (30)

Even in nearly-isotropic flow regimes (e.g. figure 11), the scalar gradient exhibits a
preferred range of orientations with respect to the local principal axes. The tendency

is for ∇θ to be parallel to γ̂ and perpendicular to α̂ and β̂. This tendency is far
from complete, however. The RMS averages of Cθα, Cθβ and Cθγ are 0.51, 0.46 and
0.73, respectively. This means that α, β and γ contribute to γe in the proportion
(0.5 : 0.4 : 1.0), an important departure from the proportion (0 : 0 : 1) assumed by
Batchelor (1959). Using the averaged values shown in figure 11, along with the
mean values 〈α̃〉 = 0.38, 〈β̃〉 = 0.09 and 〈γ̃〉 = −0.47 from § 4, in (29), one obtains
−〈γ̃e〉 = 0.13. The influence of the two extensional strains has thus reduced the
compression rate to less than one third of its ideal value, −〈γ̃〉 = 0.47. This estimate
of the effect of non-constant strain on the compression rate of scalar gradients will
be developed more fully in the remainder of this section.

To summarize, I have now considered four different estimates of the non-
dimensional compressive timescale. The ‘ideal’ value, q, is defined using the least
eigenvalue of the strain tensor, and was employed in the original definition of the
Batchelor spectrum. Estimates qB and qK are derived by fitting spectra to the Batchelor
(1959) and Kraichnan (1968) forms, respectively. The ‘effective’ value, qe, is computed
from the strain tensor but, unlike q, it takes account of imperfect alignment of the
scalar gradient with the compressive strain. My contention will be that qe provides
a better fit to both measured and calculated spectra than does q (i.e. it is closer in
value to qB and qK).

Let us turn now to an examination of the direction cosines Cθα, Cθβ and Cθγ over
a range of flow regimes (figure 12). In general, the turbulent regime is characterized
by scalar gradients tending towards the direction of the compressional strain, with
roughly equal components along the other two principal axes as described above. In
the limit of low Reb, the flow is parallel. The intermediate eigenvalue is zero, and α̂ and
γ̂ point at 45◦ angles from the vertical. The scalar gradient points midway between
α̂ and γ̂, which is simply upward. Since α+ γ = 0 in this extreme, the effective strain
rate given by (29) vanishes. Note that the departure from isotropic conditions as Reb
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Figure 12. Dependences of the absolute cosines (a) Cθα, (b) Cθβ and (c) Cθγ , upon the buoyancy
Reynolds number. Results from all simulations are included. In each case, data are from the
central layer −Lz/16 < z < Lz/16. Symbol sizes indicate Prandtl number, with smaller symbols
representing Pr > 1. The time is indicated by shading, as shown on the bar above (a).

is reduced tends to occur more gradually in the high-Pr cases than in the Pr = 1
cases. This is not surprising: as Reb decreases, so does LO , and thus the proportion
of the wavenumber spectrum that is larger than LO increases. Gradients on these
large scales are tilted by gravity toward the vertical. On scales smaller than LO , the
tendency is for gradients to tilt towards γ̂. In the high-Pr cases, there is a relatively
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Figure 13. Histograms of the non-dimensional, effective compression rate. This example is taken
from run R31P1 at t = 4242 s; restricted to the central layer −Lz/16 < z < Lz/16. Data are
subsampled according to the local value of ε compared with its volume average, 〈ε〉. Solid curve:
all points; dashed curve: ε > 〈ε〉; dotted curve: ε 6 〈ε〉.

large gradient signal at scales small enough to be dominated by strain rather than
buoyancy, and thus a reduced overall tendency for scalar gradients to tilt toward
the vertical. From the results illustrated in figure 12, one expects that the effective
compression rate −〈γ̃e〉 will drop to zero as Reb decreases, with the effect appearing
first in flows with low Pr.

The spatial statistics of γ̃e for the isotropic example are shown in figure 13. Note
that there is a dramatic difference between the statistics of γ̃e in highly dissipative
regions and those in more quiescent regions. Where the local dissipation rate ε
exceeds its spatial average, γ̃e tends to take extreme values, with a preference for
strong compression. The mean value of γe for this subsample is −0.294. Where ε is
smaller than its spatial average, γ̃e takes more moderate values, with only a slight
preference for compression (a mean value of −0.096). Since these points are more
numerous, however, they dominate the spatial average, so that the overall mean
effective compression rate is 〈γ̃〉 = −0.158. The difference between this value and the
estimate 0.13 given earlier in this section indicates a positive correlation between large
Cθγ and large γ̃. This is simply the expected tendency for scalar gradients to align most
closely with the compressive direction in highly-compressive regions. The negative
reciprocal of the spatially-averaged compression rate provides a representative value
for the effective compressional timescale, qe = 6.33.

The foregoing results pertain only to the strongly turbulent case of simulation
R31P1 at t = 4242 s. I now discuss the dependence of these results on time for
the more ‘typical’ simulation, R21P1 (figure 14). Throughout the life cycle, the ideal
compressive timescale, q, remains very close to the value of 2 estimated by Batchelor
(1959). In contrast, qe varies dramatically between the isotropic and anisotropic
regimes. In the isotropic regime, qe approaches the value 6.33 derived above from the
high-Re simulation. In anisotropic flow, the effective compression rate is near zero
(cf. figure 12 and the accompanying discussion), so that qe becomes very large.

The time dependence of qe is closely tied to that of the buoyancy Reynolds
number (figure 15). Note first that the ideal compressional timescale, q, does not vary
substantially from Batchelor’s estimate of 2 at any time, during any simulation, despite
wide variations in the Reynolds, Richardson and Prandtl numbers which characterize
the flow. Batchelor’s estimate therefore proves remarkably robust. The slight increase
in q as Reb is increased is consistent in magnitude with the intermittency effect
suggested by Gibson (1968b). In contrast, the effective timescale, qe, varies greatly
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Figure 15. Ideal and effective compressive timescales as functions of the buoyancy Reynolds
number. Data are taken from all of the simulations listed in table 1. Symbol sizes indicate Prandtl
number, with smaller symbols representing Pr > 1. The time is indicated by shading. The lower
region (where values cluster tightly around 2) is the ideal timescale, q, while the upper region (where
data are more variable and scattered) represents the effective timescale qe.

while never becoming smaller than about 6, even in the large-Reb limit. Both early
and late times are characterized by small Reb and large qe. Intermediate times, when
turbulence is most intense and Reb is largest, reveal the smallest values of qe. The
dramatic difference in compressive timescale caused by the fluctuating character of
the strain tensor is such that I can plot both the effective and ideal values using the
same symbols without fear of confusion. Even in the limit of large Reb, misalignment
between ∇θ and γ̂ due to non-constant strain is sufficient to increase the effective
compressive timescale by at least a factor of three above the ideal value 2.

The manner in which qe diverges from its high-Reb limit as Reb decreases is almost
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Source Reb qB qK

Predicted value > 100 — 7.3± 0.4
Present spectra 100–1000 4.9± 1.0 6.8± 1.4

Williams & Paulson (1977) ∞ 6 8(b)

Bogucki et al. (1997) ∞ 3.90± 0.25 5.26± 0.25
Gibson & Schwarz (1963) ∞ 2 3
Gargett (1985) A 34000–63000(a) 12 16(b)

Oakey (1982) 1000–2000(c) 3.7± 1.5 4.9± 2.0(b)

Gargett (1985) B 50–1750(a) 4 5(b)

Newberger & Caldwell (1981) NA(d) 4.95 (4.28, 6.65) 6.5 (5.6, 8.8)
Grant et al. (1968) NA(d) 3.9± 1.5 5.1± 2.0(b)

Table 2. Comparison of numerical and observational estimates of q derived by fitting theoretical
spectra. Gargett (1985) A and B refer to the two classes of spectra identified in that paper.
Uncertainties represent the standard deviation. (a) Reb was computed from values of the parameter
I given in table 1 of Gargett (1985). (b) Values of qK from observational data are estimated from
the relation qK ≈ 1.39qB , based on the present results. (c) This range of Reb was computed from
means of the dissipation rates and temperature gradients given in table 2 of Oakey (1982). Salinity
effects were neglected. (d) Reb could not be estimated from the results provided by Newberger &
Caldwell (1981) and Grant et al. (1968). Newberger & Caldwell (1981) state that the Cox number
was > 2000 in the cases they examined, which suggests Reb ∼ 103 or larger.

certainly specific to the flows simulated here. (Even within this set of simulations,
the divergence is visibly slower in the high-Pr cases, as anticipated above.) However,
I expect that the asymptotic value of qe attained at high Reynolds numbers should
be common to all turbulent flows. The value 6.33 given earlier is actually one of the
lowest values obtained; the more comprehensive results shown in figure 15 suggest
that the true limiting value of qe lies somewhere between 6 and 8. Based on visual
examination of figure 15, I estimate that qe remains within scatter of its asymptotic
value for buoyancy Reynolds numbers down to O(102), or shear Reynolds numbers
down to about 10, and smaller in high-Pr flows. Values of qe for 23 sample cases in
which Reb > 100 and Res > 10 reveal a mean of 7.3 (with a standard deviation of 0.4).
That value is my estimate for the effective non-dimensional compressive timescale of
scalar gradients at high Reb.

A similar calculation has been performed by Yeung et al. (1990) for the idealized
case of stationary, homogeneous, isotropic turbulence. In that study, the average strain
normal to a local material surface was computed following Lagrangian trajectories.
Assuming ergodicity, the results ought to be comparable to the present volume-
averaged results for large Reb. The average strain in the highest-Re case considered
(−〈γe〉 in the present notation, 〈a∗〉 in that of Yeung et al.) was 0.153 (see their table
2), which corresponds to qe = 6.5. This is somewhat lower than my estimate of 7.3.
The discrepancy could easily be due to methodological differences, but it could also
indicate that the present results have not quite converged to the high-Reb limit, and
therefore that qe = 7.3 is an overestimate. However, given that I am trying to explain
a departure from the ‘ideal’ value q = 2, the discrepancy between 6.5 and 7.3 does
not seem important.

5.3. Comparison with scalar gradient spectra

Results shown in figure 15 suggest that, when Reb is decreased below O(102), the
effective compression rate should increase rapidly towards values exceeding 102. This
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predicted departure from the isotropic limit does not compare closely with that found
by fitting computed spectra to the theoretical forms to obtain qB and qK . For the
example shown in figure 10(b), the value of qe is effectively infinite (i.e. the average
effective strain is zero). The fitted values of qB and qK , while relatively large, are
not infinite. This is true in general for the anisotropic flow regime: the fits to the
theoretical spectra are very poor, making the estimation of qB and qK highly uncertain.
The resulting estimates are higher than those found in isotropic cases, but otherwise
bear little resemblance to the behaviour of qe shown on figure 15. It is clear that
factors other than the time-dependent strain are influencing the shape of the scalar
gradient spectra in this low Reynolds number regime.

In the high-Reb regime, however, the comparison is excellent. The example shown
in figure 10(a) exhibits a close fit to the Kraichnan spectrum, and the resulting value
of qK is 7.0 ± 0.3. This compares very well with the estimate qe = 7.3 ± 0.4 given in
the previous subsection for isotropic flow. For a more detailed comparison, spectra
were computed for the 23 cases discussed above (in which Reb > 100 and Res > 10)
and qB and qK determined for each. Means were then computed, weighted by the
inverse of the uncertainty estimate (cf. § 5.1). The resulting mean of qK is 6.8, with
standard deviation 1.4. This agrees with the predicted value to within the statistical
uncertainty.

I turn now to comparisons with scalar spectra obtained by other investigators
(table 2). Bogucki et al. (1997) performed DNS of stationary, homogeneous, isotropic
turbulence, and found excellent fits to the Kraichnan spectrum, with qK = 5.26±0.25.
The effective value of Reb in those unstratified simulations was infinite. Measurements
made in geophysical flows have yielded high-quality scalar spectra over a range of
Reb. Fits of the measured spectra to the Batchelor form have yielded values of qB
ranging from 4 to 12 and higher. Explicit comparisons of observational data with
the Kraichnan spectrum have not yet been attempted. Spectra measured by Williams
& Paulson (1977) in the atmospheric boundary layer and by Oakey (1982) in the
upper ocean both appear to roll off less steeply than the best-fit Batchelor curve,
suggesting that a closer fit might be achieved using the Kraichnan form. The present
results allow one to guess what such a comparison will yield. Estimates of qK in the
23 samples discussed above exceed the corresponding estimates of qB by a ratio of
1.39 ± 0.03. I therefore anticipate that fits of observational data to the Kraichnan
spectrum (in cases where the fit is reasonably good) will yield values ranging upward
from about 5.

Estimates of qK (and qB) are widely scattered, and there is no discernible trend
with respect to Reb. In general, the measurements listed in table 2 may be assumed
to represent flows with Reb larger than that achieved in the present simulations.
In some cases, estimates of Reb cannot be made from available information. In
both the simulations of Bogucki et al. (1997) and the laboratory experiments of
Gibson & Schwarz (1963), Reb was infinite because density stratification was zero. In
each case, however, buoyancy effects (i.e. damping of large eddies) may have been
mimicked to some degree by the domain boundaries. The large estimates of Reb that
Gargett (1985) assigned to her ‘Class A’ observations have been questioned by Gibson
(1987), who suggests that Gargett’s class A measurements are an artifact of extreme
inhomogeneity associated with fossil turbulence. Specifically, he suggests that the
scalar gradient spectrum is dominated by large regions of the measurement volume in
which ε (and therefore Reb) is much smaller than its mean value. If this is true, then
the value of ε used to scale the spectrum, and the value of Reb used to interpret the
results, may be inappropriately large. Although the characterization of the class A
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records as ‘fossil’ contradicts the observation that the turbulence was newly-created,
the inhomogeneity effects suggested by Gibson (1987) nevertheless provide a plausible
explanation for the large values of qB observed. (That problem is not significant in
the present results, since the flow is homogeneous by construction in the direction
of the spectra.) In summary, it is not clear that a trend in qK with respect to Reb
could be detected at this point even if it existed. Nevertheless, I conclude that there is
nothing in the previous observations to contradict the present suggestion that there
is no such trend once Reb > O(102).

As for the asymptotic value of qK , the present estimate (qK = 6.8) lies slightly
towards the high end of the previous estimates listed in table 2, but it is well within
the range of those estimates. This remains true even when the Gargett Class A
result is excluded. I conclude that the present results are entirely consistent with the
net results of existing laboratory, atmospheric, oceanographic and numerical studies.
However, I have gone beyond those studies by conducting explicit calculations of
the effective strain rate that reinforces scalar gradients. This has enabled me to test
Batchelor’s view of the physics that govern the scalar spectrum, and to propose a
plausible explanation for the tendency of qB to exceed Batchelor’s estimate of 2.

6. Summary
I have documented the contrasting regimes of parallel shear flow and vigorous

turbulence with respect to the geometry of the dissipation range. This geometry ap-
proaches a clearly-defined asymptotic state, in which the scalar gradient compression
rate takes on a characteristic value, as the buoyancy and shear Reynolds numbers
become large enough to leave the dissipation range approximately isotropic. In this
regime, the large-scale flow geometry is distinctly characteristic of sheared, stratified
turbulence forced by KH instability. Yet, the alignment statistics of the dissipation
range are consistent with results of previous investigations covering a variety of
large-scale flow geometries. These include DNS of stationary, homogeneous, isotropic
turbulence (e.g. Yeung et al. 1990; She et al. 1991), DNS of turbulence subjected to a
constant shear (Ashurst et al. 1987; Nomura & Elghobashi 1992), and measurements
of grid-generated turbulence in a wind tunnel (Tsinober et al. 1992). I therefore sug-
gest that this asymptotic behaviour of the dissipation subrange is characteristic of
turbulent flows in general.

For the asymptotic regime to be approached to within the scatter of these results,
Reb and Res must exceed O(102) and O(101), respectively. While those values depend to
some degree on the large-scale flow geometry, they ought to be valid for a large class
of shear-driven buoyancy-damped turbulent flows. Previous studies have indicated
that dissipation-range physics is strongly modified by buoyancy effects as Reb drops
below a critical value, estimates of which range between ∼ 30 (Gibson 1980) and
∼ 100 (Gargett, Osborn & Nasmyth 1984). The present results are consistent with
that picture.

In the asymptotic state, the mean compression rate for scalar gradients is 0.16
√〈ε〉/ν.

This result allows me to propose a revised value for the non-dimensional compres-
sional timescale that appears in the Batchelor (1959) and Kraichnan (1968) forms of
the scalar spectrum.

Batchelor’s theory of scalar fluctuations in the dissipation-range contains four main
elements, which I now discuss in turn.

(i) Equilibrium fluctuation strengths are governed by a balance between the effec-
tive strain (29) and molecular diffusion. Under appropriate conditions of stationarity,
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homogeneity and isotropy, the spectrum should therefore collapse to a universal form
when scaled using the length scale LB = (κ/〈|γe|〉)1/2. The present results favour
universality, although this property of the scalar spectrum remains controversial (e.g.
Gargett 1985).

(ii) Assuming that the effective strain rate is statistically sharp, Batchelor (1959)
derived a specific functional form for the proposed universal spectrum. Kraichnan
(1968) relaxed Batchelor’s assumption using the Lagrangian History Direct Interac-
tion Approximation, and thereby derived a revised functional form that accounts
for intermittency effects. While Batchelor’s form rolls off like a Gaussian at high
wavenumbers, Kraichnan’s form exhibits a gentler, exponential roll-off. Both forms
exhibit k−1 subranges at lower wavenumbers. The present spectra (at sufficiently large
Reb) exhibit the k−1 range, along with a gentle roll-off at high wavenumbers that
indicates a preference for the Kraichnan form.

(iii) Because the effective strain rate is difficult to measure, Batchelor suggested a
parameterization in terms of the mean dissipation-rate: 〈γe〉 = −q−1

e (〈ε〉/ν)1/2. This
leads to the more familiar expression LB = (κ2ν/〈ε〉)1/4 for the Batchelor length scale.
Gibson (1968b) pointed out that a more physically appropriate parameterization
would employ 〈ε1/2〉 rather than 〈ε〉1/2. Because only the latter can be measured in
most cases, subsequent investigators have retained Batchelor’s form. In the present
results, the difference between 〈ε1/2〉 and 〈ε〉1/2 is at all times less than 15%.

(iv) To estimate a value for qe, Batchelor equated γe with the least principal strain,
γ, in which case qe = q. In other words, the scalar gradient field was assumed to be
aligned perfectly with the compressive eigenvector of the strain tensor, as would occur
in the long-time limit if the strain field was steady. Using contemporary measurements
of γ, Batchelor then arrived at the estimate qe ≈ q ≈ 2. My results confirm that q ≈ 2,
but also indicate that qe is substantially greater than q, as do most of the spectral
estimates listed in table 2.

In the present study, the emphasis is on the fourth item listed above. My goal
has been to relax the assumption of perfect alignment between the scalar gradient
field and the compressive strain, taking advantage of the possibility of computing
alignment statistics using DNS data. The particular alignment statistic needed, 〈γe〉,
was first computed for the case of purely homogeneous, isotropic turbulence by
Yeung et al. (1990). I have shown, through the consistency of qe and qK , that this
effective strain rate is very close to the value needed to explain the shape of the scalar
spectrum in the dissipation range. I have also estimated the minimum values that
the buoyancy and shear Reynolds numbers must take in order for the requirements
of dissipation-range homogeneity and isotropy to be satisfied in a sheared, stratified
environment typical of geophysical flows.

The conclusions are as follows. For Reb > O(102), or Res > O(101), the scalar
spectrum has the Kraichnan (1968) form (27), with qK = 6.8± 1.4. This value of qK
is predicted accurately by Batchelor’s parameterization of the effective strain, once
the imperfect alignment between the scalar gradient and the compressive strain is
accounted for. Direct computation of the effective compression rate gives qe = 7.3±0.4.

Previous estimates of qB have yielded widely scattered results ranging from 2
(Gibson & Schwarz 1963) to 12 (Gargett 1985), which correspond to qK ranging
from 3 to 16. The reason for the scatter is not understood. It could be that the
scalar spectrum is not universal after all, as suggested by Gargett (1985). As further
support for this possibility, I note that both the atmospheric observations of Mahrt &
Howell (1994) and the simulations of Yeung et al. (1995) and Smyth & Moum (1999b)
suggest that higher-order statistics may reveal anisotropy imposed on the dissipation
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range by large-scale geometry, even though such anisotropy is not evident in analyses
like those considered here. It could also be that the ideal conditions of stationarity,
homogeneity and isotropy upon which universality depends are not present in some
of these flows. The absence of stationarity is difficult to recognize in observational
data, and could result in spectra far from the equilibrium form. Inaccurate estimates
of 〈ε〉 may result from inhomogeneity (e.g. Gibson 1987) or from anisotropy (Itsweire
et al. 1993; Smyth & Moum 1999b). Finally, the discrepancies could simply reflect
the inherent difficulty of fitting the theoretical curves to observational data (cf. § 5.1,
also Oakey 1982). Ongoing research is addressing the various mechanisms that may
influence estimates of qB and qK .

The present results are consistent with the existing observational, experimental and
numerical data. My estimate of qB lies well within the range of previous estimates
(cf. table 2). Like most previous measurements, my estimate significantly exceeds that
of Batchelor (1959), and an explanation for that has been proposed. My conclusion
that the high Reynolds number limit is reached when Reb exceeds O(102) would
be invalidated if previous measurements of qB showed a trend with respect to Reb,
but they do not. The available evidence therefore suggests that mismatches between
measured scalar spectra and the theoretical form of Batchelor (1959) are due to non-
persistence of the strain field and the resulting misalignment of the scalar gradient
with the compressive strain.

I wish to thank J. Moum and D. Caldwell for useful discussions during the course
of this research. Valuable critical readings of an early draft were provided by T.
Dillon, L. Mahrt, J. Nash and J. Werne. D. Bogucki brought the Kraichnan spectrum
to my attention. The original suggestion to compute q from DNS data came from J.
Nash. I also wish to thank A. Gargett and two anonymous reviewers for many useful
comments. This work was funded by the National Science Foundation under grant
OCE9521359. Computations were performed on the CM5 facility at Oregon State
University’s Environmental Computing Center.
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